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MODELING RADIANT-HEAT-TRANSFER PROBLEMS IN MEDIA OF 

NONPLANE GEOMETRY 

K. S. Adzerlkho, V. I. Antsulevich, 
V. P. Nekrasov, and V. P. Trofimov 

UDC 536.3:536.52 

Approximate and numerical methods of solution of radlatlon-transfer equations in 
cylindrical and spherical media are proposed, the spectroscopic lumlnescence char- 
acteristics of infinite and finite cylinders are analyzed, and am algorithm for 
their calculation is given. 

In many problems of radiant heat transfer, it is necessary to take account of multiple- 
scattering processes, since the heat carrier in various power stations is a two-phase gas-- 
solld-partlcle system. The investigation of multiple-scatterlng laws is also of great impor- 
tance for other fields of physics and for physlcal-englneerlng applications (atmospheric op- 
tics, the energetlcs of planetary atmospheres, the problem of spacecraft entry into the at- 
mospheric layer, the interaction of laser radiation with matter, etc.). The intensification 
of modern power stations, associated with the considerable increase in heat-carrler tempera- 
ture, requires as accurate as possible a determination of their thermodynamic characteristics. 
At the same time, the radiant component in the total energy balance becomes significant, and 
therefore the correct solution of radiant-heat-transfer problems is a pressing concern. On 
the one hand, it is necessary to establish the basis of radiation-transfer equations for real 
physical models and the limits of applicability of this solution; on the other, it is neces- 
sary to use reliable spectroscopic characteristics of the media investigated. 

The problem of radiation propagation in two-phase media of nonplane geometry is one of 
the most important in modern radiatlon-transfer theory. Because of the great mathematical 
difficulties involved, approximate [1-3] or numerical [4, 5] methods are usually used for 
the solution of integrodifferential radiatlon-transfer equations. Note that the development 
of approximate methods of solution is expedient both for rapid estimates of the energy char- 
acteristics of two-phase nonplane media and for the determination of the best initial approx- 
imation in n,,merical calculations of radiation-transfer equations by iterational methods. 
The wide use of computers allows numerical experiments to be carried out for diverse physical 
phenomena, which, in economic terms, is considerably preferable to full-scale experiments 
and physical modeling. By constructing mathematical models, it is possible to study the im- 
portant physical laws governing phenomena or to investigate directly conditions of power- 
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station operation which cannot be determined either in experimental or in full-scale condl- 
tions. 

In the present work, approximate analytic expressions are given for the radiative ca- 
pacity of cylindrical and spherical two-phase media. On thls basis, an effective iteratlve 
method is developed for the solution of the equations of radiation transfer in two-phase 
cylindrical (infinite or finite) media. By means of accurate numerical calculations, limits 
of applicability are established for the approximate relations for the calculation of the 
luminescence characteristics of an infinite two-phase cylinder, 

In essence, the approximate methods of calculating the radiative capacity of plane, cy- 
lindrical, and spherical two-phase homogeneous media proposed in [3, 6, 7] involve the pre- 
liminary approximate determination of the source functions, followed by direct integration 
of the radiatlon-transfer equations. Suppose that the two-phase medium Is characterized hy 
an attenuation coefficient = = x + o, and its slze by the quantity L in the case of a plane 
layer or R in the case of a cylindrical or spherical medium. The indicatrlx of radiation 
scattering on an elementary volume is taken to be spherical. The following representation 
of the indlcatrlx may be used to take account of its nonspherical form in considering mul- 
tiple scattering processes [3, 5, 6]: 

p( I ,  i ' ) = a  + 4 n ( l  - -  a) 6 (I - -  i'). ( 1 )  

This representation reduces the initial equation to the case of isotropic scattering with 
the scattering coefficient a replaced by the quantity aa. The parameter a denotes twice the 
hemispherical fraction of forward scattering in the interaction of radiation wlth an elemen- 
tary volume of the medium: a = 2B. 

The radiatlon-transfer equation in a two-phase homogeneous medium may be written in the 
form [8] 

(Iv)i l i  (t, ~, 1 ) +  l i  (t, ~, I ) =  Si (t, ~, I). ( 2 )  

Here the subscript i = i, 2, 3 denotes the case of plane, cylindrical (infinite), and spher- 
ical media, respectively 

I ,  = It  (t, p), St (t) = - 2 - = f  1 I,  (t, p) d~ + S O (t), 

( 3 )  
d 

( l vh  = ~ - -  ; 
dt 

I,. = 12 (~, o, ~), s ,  (~) = q - ~ .  

0 0 

I .  (x, O, r sin OdO + S o (T), 

O sinOsinqo 0 
(Iv) 2 = sin 0 cos r Ox r, Ocp 

I s = I.~ (T, 0), S a (x) : ~ -  Is (x, 0) sin 0d0 + S 0 (x), 

0 sin 0 0 
(Iv) 3 = cos 0 

0~ x 00 

(4) 

(5) " 

Under local thermodynamic equlllbrium, the function So(t) is 

S O (t) = (1 - -  Z) B (T). (6 )  

I n  t h e  c a s e  w h e r e  no  r a d i a t i o n  f a l l s  o n  t h e  m e d i u m  f r o m  w i t h o u t ,  t h e  b o u n d a r y  c o n d i t i o n s  f o r  
t h e  e q u a t i o n  t a k e  t h e  f o r m  

II( O, P') I~>o = It(to, P)]~<o = O, 

I2 ('to, 1)Io.~<o = 13 (xo, O)1~<o~<2,~ = O. 
(7) 
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The solution of the problem in Eqs. (2), (3), and (7) for a plane layer is given in [6]. 
The following expressions are obtained for the hemispherical radiation intensities of a plane 
layer 

} I t ( t ) =  l ---ff --~- I i (t,  If) d~t = 1 - -  Ai e-~'t - -  A2Re -h'e,-O , 
o (8)  

0 

1 I T ( t ) =  1 [ B ~ ! I i (t, Iz) dll = I --AiRe -h't --A~e -'h'v'-O , 

B ---- xgB (Tg) + Xso ~ (Tso) 
• + Xso 

aA  l : 1 -- E i -- R (l--El) e - ~ d ' ,  aA., : 1 -- E z - - R  (1 -- El) e -h't" , 

(9) 

~ - l  ( 2p ~,/~. (lO) 
a = l - - R Z e  "-zh't~ R - - - ~ ,  kt = 26 (1--  X), 6---- I + ~ X  / 

The functions lok = ~B (k = i, 2) are the radiation intensities falling from outside 

on the layer from the left (~ > 0) and from the right (~ < 0), while the subscripts g and so 
denote the gas phase and the solid phase, respectively. When Et ffi E2 = 0, the well-known 
relation for the hemispherical emissivity of a two-phase layer is obtained [9, i0]: 

~(t0)= It(t0) _ &(0) (I -- R) ! -- e-h't~ 
B ---B = i + R e _ h ~ t o  , (ii) 

where R is the coefficient of diffuse reflection of an infinitely large optical thickness. 

Using Eq. (8), an approximate relation for the source function St(t) may be formulated: 

s, (0 = y 4 (t, ~,) d~, + So (t) = T 
--! 

Then, substituting St(t) into the initial equation, the directed radiative capacity of a two- 
phase layer may be found [6]: 

~(t, ~,) I ,  (t, ~) 
B 

nt I e' 'kd - - e  
= 1 - -  (1 - -  E O e - - ~ - - - ~ . g  (1 + R) n - - v . k ,  

nt 
P, 

n(t , - - t  ) 

.(to-t) I e--k't - -  e--u - h , t .  
~(t,P.)= 1--(1--E2)e ~ --~.[~(I+R) n - - I ~ k t  

nt 

Ai + ek# - -  e---~ A~,e -ka~ ]when ix > 0, 
n + ~k, 

(13) 
n(t,--t) 

e " - k d t ' - t )  e I~ 1 
At + - -  A2 when V- < 0, 

J n + ~k~ 

where 
n = l - - X + 2 ~ .  

Using Eqs. (8) and (13), the hemispherical and directed emissivity of a plane two-phase 
medium may be analyzed as a function of the optical characteristics of the medium, the bound- 
ary conditions, and the conditions of observation [6]. The results of these calculations 
have been used to construct nomograms expedient for the analysis of the layer emissivity, 

In [ii], the emissivity of an inhomogeneous two-phase layer bounded by reflecting and 
radiating surfaces was analyzed. As an example, curves of the radiation emitted from a two- 
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[.f~3 

~i  1 -i 

3 

o,8i 
# I 

0 4 8 % 
F i g .  1. Luminescence  i n t e n s i t y  
o f  n o n i s o t h e r m a l  l a y e r  as a 
f u n c t i o n  o f  t h e  o p t i c a l  t h i c k -  
ness for different temperature 
gradients (W/~m.sr): i) c = 0; 2) 
0.2; 3) 0.6; 4) 1.0. 

phase layer with transparent boundary surfaces are shown in Fig. i. 
erature gradient is given by the relation 

T(t)=Toexp[--c( t - - to) /2]z .  

Using t h e  E d d i n g t o n  a p p r o x i m a t i o n  to  s o l v e  Eqs.  ( 2 ) ,  ( 4 ) ,  and (5) 
J ( x )  f o r  c y l i n d r i c a l  and s p h e r i c a l  media may be d e t e r m i n e d :  

J2 (~) = B [1 - -  A7 o (kq)l, 

where 

and 

2 kT,(kTo) ' k =V-3'(l--~.), A - '  = 70 (k o) + 

The corresponding temp- 

(14) 

[12-14], the function 

(15) 

Ja (x) = B ( I - -C x~ / 
xshk% I ' (16) 

re ~-+ 1 + e  -2h~~ . 
~o 

Substituting Eq. (15) into the corresponding initial transfer equations, the radiation 
intensity may be found in the case of cylindrical and spherical configurations of a two-phase 
medium [ 3 ] : 

l / x 0  ~ - x  2sin 2 ~ + x c o s ~ )  
1__ 12 (z, 0 ,~)  = 1 - - e x p  

B sin 0 
TgOS9 

- - Z A e x p  ( xcos~ 7o (kV-xZ_xZsinZ~)eXP ( s~nO ) dx 
sin 0 

1 

B 
I s (~, p.) = 1 - -  exp ( - -  ~ - - ] / ' z~  - -  xz + ~2t,2 ) _ 

(17) 
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__ ~'c._.._~o C J" sh ( k l / ' x  z -}- x z - -  "czpz) exp (x - -  xlx) dx.  
shoo  l / x  z + xz _ x~z (18) 

- I  / %-~;+~.., 

Using certain physical and mathematical simplifications, the basis of which is given 
in [3], relations for the emissivity of a cylinder and a sphere may be written in a form con- 
venient for practical use 

k'co 6 ) h% 
, .  6~ 2-- ku (l--e 8) 

(%, 0) = 1 - - e  ,i.o 3 z 

(4+~in 0)[3 +2k( l - -e-- -2-~~ 

= 4k sin 0/(4 + k sin 0), 

2~o (8 + k) ] 
24k 1--  3-~j(8u tl -e-  ~"+~'l 

%1'(%) = 1 - -  e --~'0- 16k + /~ 

(8 + k)[3 -+- 2k ( 1 - - e - - F - " ) ]  

(%, Ix) = (1 - - e  -2c.") [ 

eP(xo) = ( l  - -  e -~~ [ I 

(19) 

(20) 

1-- k(3k+'co)  C ] ,  
x o -{- 3k + l~k'c o (21) 

~-z ('co + 3k) c ] 
6k -q- % (2 --l- k) " (22)  

A detailed analysis of Eqs. (19)-(22) is given in [3]. Comparison of these equations 
with the corresponding expressions for a plane layer shows that the use of the "plane-layer 
approximation" may lead to considerable errors when To < 5. Note that for purely radiating 
media 

e~ (%):e~(%):e~(%) - -  (1 - -e -~T ' ) : (1  - -  e--~'~ : ( l  - - e - " ) ,  ( 2 3 )  

which is in good agreement with the data of [15]. Nomograms for the calculation of the emis- 
sivity of a two-phase cylinder in accordance with Eq. (19) are shown in Fig. 2. 

To allow accurate calculations of the emissivity of an infinite two-phase medium to be 
made, and to establish the basis for limits of applicability of Eqs. (19) and (20), a numer- 
ical method of integration of Eq. (2) has been developed; the method is described in detail 
in [7]. The Vladlmirov method [16] and the dlscrete-ordlnate method are used to write an 
algorithm; the best first iteration is found to be Eq. (15). The grid for the solution of 
Eq. (2) according to the method developed is shown in Fig. 3a. At the grid points, the solu- 
tion is found from the following relations: 

/h.i,~ = /h,:_t ,] 'qh,~,]  + ] / ' 1  - -  7~ S~.t_xPh., ,] + (1 - -  q~,t,j - -  Pk. id)  ] / 1  - -  u Sh,~, (24) 

s~,, = V ~  + (l - x) B (T,) , 
--u t 

qh,t,i = exp ( Axi j  V - I - - ? ~  "1 " 
] / ' 1 - - ~  ) ' Pk.l.i = Ax 0 (--qk,ld), 

1o (T,) = ~ Ah'~ [B,,I (~,,!*.,?.) + C,,_,l (%, ~,,_,, ~.)1. 
h n 

(25) 

(26) 

where 

Bn A x  n l [ A y ' ~ + x " - t ( a r c s i n x " - a r c s i n x ' * - t ) ] x l  x ' 

1 [ A y . + x . ( a r c s i n  x---~--arcsin x._l ) ] ,  
C n - i  = t-~x n Tt "['t 
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0 2 # 0 2 # 0 2 To 

Fig. 2. Nomograms for the calculation of the emissivity of a 
two-phase cylindrical medium for 0 = 90 ~ (a), 8 = 60 ~ (b), 8 = 
30 ~ (c). 

a y~ b ~ z  
Ym ~To 

~,-~ 7 L ~ ~ . ~ "  .X ~ ~',, 1 /  z, 
. . . /_  ~ �9 . - z ; ,  

,,.._ : , -  

,~_Zn~ f [ I I [ I" I ' ~  \ I ~ I I I _  
Y " " - -  - --," ~T " T - O  x ~' ,7:rorz5 r~.zr,.,~:O Z,:O x "[/=LO "2 ~3 " "  bin.2 m-t .,.,,7 

Fig. 3. Varlable-specification grid for the calculation of 
the radiation of an infinite (a) and finite (b) two-phase cy- 
linder. 

A x .  = x . - - x . _  l, A y .  = y . - - y . _ , ,  

l h ( - - V " r ~ - - y  2 , y ) : 0  when0~y~<To, k = l ,  2, . . . ,  n. (27) 

Here ~,i,j - l(xij' YJ' Tk); xij is the value of the coordinate x at the intersection of the 

= = const; ~ and Yk are the positive weights and nodes straight line yj const and the arc T i 

in the Gauss quadrature formula for y on the segment [0, +i]; x = T~, y = T~--~-~. 

The following scheme is used for the calculation. Equation (15) is used to calculate the 
values of J(Ti), i -- i, 2, ..., m. Since lo(T) = ~J(T), the values of Io(T) obtained are 

substituted in Eqs. (25). Then the values of Sk(T i) are substituted in Eq. (24) and the val- 

ues of Ik, i, j are found at all the grid points. Substituting these values into Eq. (26), 

Io(li) is found in a new approximation; summation over n in Eq. (26) is taken over the grid 

points on the arcs T i = const (Fig. 3a). This process is repeated until the accuracy speci- 

fied in advance is attained. 

Numerical calculations on EC-1030 and EC-I022 computers have demonstrated the efficiency 
of this method of solution. For large values of the survival probability of the quantum (~ ~ 
0.999) and the optical thickness (to ~ 15), the calculation time does not exceed a minute. 
On the average, the calculation of a single variant takes -10-15 sec. A calculation accuracy of 
0.1% is reached after 2-3 iterations for to ~ 0.01-0.i and after fl0 iterations for to - i; 
with further increase into the number of iterations increases (for To ~ 15, ~i00 iterations 
are required). 

Comparison of the results obtained with calculations by Eq. (19) reveals good agreement 
when A ~ 0.90-0.95. With increase in optical radius of the cylinder, the error of the approx- 

imate calculation using Eq. (19) rapidly falls. For To ~ 0.i and A ~< 0.9, the error practi- 

cally never exceeds 20-25%. Note that accurate values of the emissivity are used in con- 
structing nomogramq (see Fig. 2) for small optical thicknesses and large values of the quan- 
tum-survival probability. As established in [3], the luminescence indicatrix of a cylindri- 
cal two-phase medium changes greatly on passing from small to large optical thicknesses, es- 
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pecially when I is close to unity. For example, the degree of anlsotropy of the l-m~nescence 
indicatrix l(To, w/2)/l(To, 0) is ~i0 for To ffi 0.05 and I = 0.999, 0.8 for zo ffi 1.0, and 
only 0.56 for To = i0. Table i gives accurate values of the hemispherical emissivity of an 
infinite cylindrical two-phase medium for different To and I. 

In modeling thermoS-engineering problems, it is very important from a practical view- 
point to establish the possibility of introducing certain effective values that determine the 
emissivity of th~medium under investiKation. In the case of a radiating plane layer, the 
arithmetic mean T A andgeometric mean T G temperatures usually used in practice [17, 18] must 
be replaced by the following effective tempeature [19]: 

where 

(,+ 
~'~ L , 

to 

A = 2 ~ exp [ - -  2 (to - -  x)l 
1 - -  exp ( - -  2to) ! - -f r - - ;  exp [ ~k--~ ]--' (29) 

A detailed analysis of Eq. (28) as a function of the temperature profile and optical 
characteristics of the medium is given in [20]. The use of T A and T G in practical calcula- 
tions may lead to large errors (Fig. 4). Figure 4 corresponds to a Schlichtlng profile [21] 

a 

1 2'rl 's T(t) = Tram + (T , , , ax -  Tram ) {1- -  1- -  T o  

In the case of a cylindrical two-phase medium, the introduction of effective values of 
the temperature or the absorption coefficient, given by the usually adopted methods of aver- 
aging, leads to large errors [7]. With increase in optical thickness, the error of the cal- 
culations rapidly increases. This behavior was established in [7] for the following depend- 
ences of the temperature T(T) and the absorption coefficient x (z) on the optical thickness 
of the cylinder: 

T (z) = T O exp ( - -  ax2), • (T) = • exp ( - -  o~2), 

where the constant ~, determining the gradient of the change in T(x) and x(x), varies over a 
wide range. 

To investigate the features of radiation propagation in a finite cylindrical medium, the 
following transfer equation must be solved [8]: 

Ol sin 0 sin q~ Ol + [• (r, z) + o (r, z)l I cos 0 01 + sin 0 cos qo 
Oz Or r a~ 

2~ 

__ a(r,4az) ~dq~.f l(r, z, O, r p ) s i n O d O + z ( r ,  z) B[T(r, z)]. (30) 

0 0 

If radiation is incident on the end surfaces of the cylinder, the boundary conditions 
for Eq. (30) take the form 

a) l (R, z, 0, q))l(i.)<o =0, 

(31) 
b) I (r, 0, 0, q))l = = It, I (r, Zo, 0, q~)[ = = lz. 

o ~<0~<--~-2 -~-~<0~<~ 

Using the new variables ~ = cos 0, ~ = cos~, x = r~, and y = r / ~  -r, an algorithm 
analogous to Eqs. (24)-(26)may be constructed. In contrast to Eqs. (24)-(26), geometric 
(and not optical) coordinates are used in the algorithm, as it is necessary to take account 
of the inhomogeneity of the medium in both r and z, and also the absence of symmetry in 0 is 
taken into account, which leads to consideration of the interval [--i, i] in ~, andnot [0, i]. 
The variable-specification grid for the solution of the initial system of equations is shown 
in Fig. 3b. 
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F i g .  4 .  R a t i o  o f  T e f  t o  T A (a )  and  T G (b)  a s  a f m a c t i o n  o f  t h e  
o p t i c a l  t h i c k n e s s  o f  t h e  l a y e r  (XT . = 5 - 1 0  - s )  : i )  T ~ x f T m i  n = 
1.5; 2) 2.0; 3) 2.5; 4) 3.0. ma.n 

I= this case the solution of Eq. (30) with the boundary conditions in Eq. (31) at all 
the grid points is found from the expression 

, _ _  I h (xu, Yl,zz)= k , i  ,,r 

- -  Y~' I 1/1- -V~ I~.i_,,1,, + ~ k.i.l.t-i + Sit  
Ax u (32)  

V 1-v~ 
Axi i 

+ - - 7 -  + • (rt, z,) + a (rt, zt) 
a z l  

where 

S~t  a(ri zz) lo(rt, z 3 + •  zl) B(rt ,  zt), (33)  
' 2,-~ 

and lo(ri, zl) is determined from Eq. (26) for each value of z = z I. The iterational process 

reduces to the following. A certain approximate expression for l(r, z, y, ~) is specified, 
and the value of lo(r, z) and hence S(r, z) is calculated for all values of r i and z Z. Then, 
using the boundary conditions in Eqs. (31a) and (31b), the solution for the plane z = Az~ is 
found from Eq. (32) for all the values k = i, 2, ..., n (0~O~/2). This procedure is re- 
peated for each cross section z I = const. Analogously, the solutions for k = n + i, n + 2, 
..., 2n (~/2~8 ~) is found for the cross section z = zo -- Az I = const (~ is the number of 
divisions along the z axis), and then the solution is extended over the whole cross section 
~l = const for these values of k (and angles e). Substituting the resulting values of Ik,i,j, l 
xn the expression for lo(r, z), the following approximation is obtained. The iterative pro- 
cedure is continued until the previously specified accuracy of the calculation is attained. 
The given algorithm is realized as a program on the EC-1030 computer; the program is written 
in Fortran IV. The first approximation adopted in this program is the expression 

l o P ,  z) = 2a{l te  -xdr'z)  -}- I+e -+ ' ( ' ' ' )  + Ja~, +}, (34)  
where 

Z 2e 

x t (r , z l=t ' l •  z')--l-~(r, z ' ) ldz ' ,  xz(r, z ) =  S [ •  z') +~(r ,  z ' )]dz ' ,  
0 . 

(35) 

while J2(r, z), determining the contribution of the intrinsic radiation of the medium, is 
given, according to Eq. (15), by the relation 

J2 (r, z) = [1 -- ,470 (kJ] B (r, z), (36)  

r 
~" .... X (r, z) : .t" Ix (r ' ,  z) -~- o" (r ' ,  z)] dr, "r o : "r (/~, z), 

o 

R 

- -  (~ ( r ' ,  z) d r ' .  
TO . 

0 
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Fig. 5. Radiation from a two-phase 
finite cylinder with B = O~ I~ = I, 
12 = 0: a)~ : 0.i; b) 0.5; c) 0.9; 
d) 1.0. i) 8 = 158~ 2) 21~ 3) 76 ~ 
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Fig. 6. Radiation from two-phase finite cylinder with B = I, 
Ix = i, I2 = 0: a) ~ = 0.i; b) 0.5; c) 0.9. I) e = 158~ 2) 
21~ 3) 76 ~ 

Preliminary calculations show that of all the trial functions Eq. (34) provides the most ra- 
pid convergence of the iterative process. As an example, some results obtained for the radia- 
tion from a two-phase finite cylinder are shown in Figs. 5 and 6, where the continuous curves 

2 

show the intensity of the emitted radiation averaged over ~ : (2/~)fl(R, z, e, ~)d~; the 
o 

dashed curves show the mean radiation intensity over the side surface of the cylinder; CI/ 

4~I I(R, z, 8, ~)d~; the dash--dot curves show the mean radiation intensity over the cylinder 

axms. Figures 5 and 6 correspond to a cylinder of the same size (To = I, to = i0) but with 
different values of the internal-source function (B = 0 in Fig. 5 and B = 1 in Fig. 6). 
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NOTATION 

l~(r, z, X), intensity of radiation of frequency 9 at the point (r, z) and in the direc- 

tion I = i(8, ~); B~(T) = (2hvS/ca)(eh~/kT-- i)-*, intensity of Planckradiation; J~(r, z) = 
(i/4w~f I (r, z, l)dfi mean radiation intensity; S(r, z) radlation-source function; So(r, z), 

~4~)~ ' 

internal-radiation-source function; ~, o, absorption and scattering coefficients; s = ~ + o, 
attenuation coefficient of medium; ~ = o/s, quantum-survival probability; p = p(l, I'), radl- 
ation-scattering indicatrlx on an elementary volume; B, hemispherical fraction of forward 
scattering for radiation scattering with elementary volume of the medium; I,, 12, radiation 
intensity falling on the ends of a two-phase cylinder from left and right, respectively; To = 
To(z), temperature along cylinder axis; T s = Ts(z) , surface temperature of cylinder; 0 s z 
L, cylinder length (or plane-layer thickness); 0 <r< R, cylinder (or sphere) radius; 0< 

r R z L 
= fadr s ro =f~dr, optical thickness of cylinder along radius; 0 <t = f=dz< to = fedz, op- 

Q o 0 0 

tlcal length of cylinder; In(X) , n-th order Bessel functlonwlth imaginary argument; ~ = cos 
e; ~ = cos @; m, external normal to boundary surface of medium. 
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